Sum of Angles of a Triangle

Objectives:

- To recognise that the sum of the angles in a triangle is 180°
- To find an unknown angle of a triangle given the other two angles

Thinking Skills:

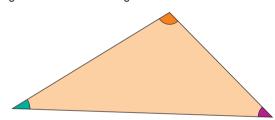
- · Analysing parts and wholes
- Induction

Materials:

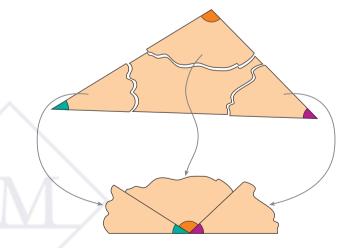
- Triangle cut-outs (see CB p.21 on how to use technology to draw triangles)
- Markers of three different colours
- · Ruler or straight edge

Classroom Organisation:

Class discussion



Primary 6 CD-ROM:


Digital Coursebook 6B, Chapter 1

Sum of Angles of a Triangle

Cut out a triangle and colour each angle in a different colour.

Tear the triangle as shown below.

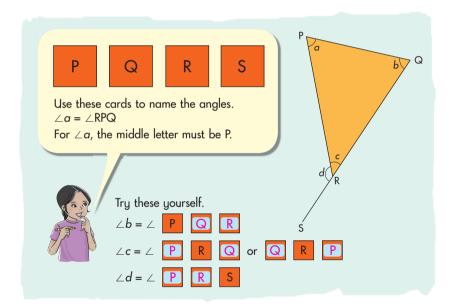
What do you notice when you arrange the three angles like this? The angles add up to 180°.

My Notes

The sum of the angles of a triangle is 180°.

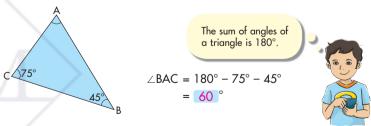
Lesson:

- Get pupils to work in pairs and follow these steps.
 - (i) Distribute a triangle cut-out to each pair of pupils.
 - (ii) Get pupils to show their triangles to the class and describe their triangles.
 For example:
 We have a fat triangle.
 We have a long thin triangle.
 Our triangle has a right angle.
 Our triangle has equal sides.
 - (iii) Get pupils to mark the three angles of their triangles in three different colours.
 - (iv) Get them to tear out the angles carefully.
 - (v) Arrange the angles along the side of a ruler. What can you say about the sum of the three angles of your triangle?
 - (vi) Lead pupils to see that the property applies to any triangle.What can you say about the sum of the three angles of any triangle?
- Get pupils to read aloud the sentence in the text box at the bottom of CB p.11.


Classroom Organisation:

Class discussion

Note:


In each of the following practice questions (CB p.12 to 15), get pupils to:

- check that their answers are reasonable. For example, if an unknown angle looks greater than 90°, their answer should be greater than 90°.
- write down their solution properly.

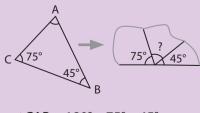
The following figures are not drawn to scale.

2 a) In Triangle ABC, \angle ACB = 75° and \angle ABC = 45°. Find \angle BAC.

b) In Triangle DEF, \angle DEF = 80° and \angle EFD = 50°. Find \angle FDE.

Practice:

 Show pupils how an angle can be labelled in a different way by using three capital letters.


For example, QP and PR are sides of $\angle a$. The two sides meet at point **P**. Therefore, $\angle a$ can also be named as \angle R**P**Q or \angle Q**P**R.

Have pupils attempt to name the other three angles. Show them how to check their answers.

For example:

Put your finger on ∠b. What is the letter there? Look at your answer. Is Q between the other two letters?

 Q2 – If pupils have difficulty understanding why the unknown angle can be found by subtracting the two given angles from 180°, use cutouts as follow to illustrate the process:

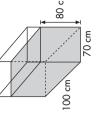
 $\angle CAB = 180^{\circ} - 75^{\circ} - 45^{\circ}$

Fill in the boxes.

4

a)
$$4 \ell = 4000 \text{ cm}^3$$

a)
$$4 \ell = 4000$$
 cm³


cm³

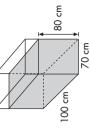
 $12 \ell = [12\ 000]$

4
$$\ell = (4000) \text{ cm}^3$$
 b) $\frac{3}{10} \ell = (300) \text{ cm}^3$ d)

d)
$$1\frac{4}{5} \ell = 1800$$
 cm³

Û

Find the volume of water in the rectangular tank. Give your answer in litres. (1 litre = $1000~\text{cm}^3$)


2

 $100 \times 70 \times 80$ $= 560 000 \text{ cm}^3$

For Questions 5 and 6, calculator is permitted.

The volume of water in the rectangular tank is 560 ℓ .

9 095 =

9

cm₃

3900

3.9 € =

4

cm₃

400

 $0.4 \ell = 0.0$

e

A tank measures 20 cm by 15 cm by 8 cm. The tank contains 1800 cm $^{\rm 3}$ of water. How many more millilitres of water must be added to fill the tank completely?

$$20 \times 15 \times 8 = 2400 \text{ cm}^3$$

The capacity of the tank is 2400 cm³.

cm³

3075

3 € 75 ml = (

로

cm₃

1230

1 \epsilon 230 ml = [

g

8 cm

15 cm

20 cm

$$2400 - 1800 = 600 \text{ cm}^3$$

= 600 ml

600 ml more water must be added to fill the tank completely.

3 Volume

Έ

24

Ε

24 025 cm³

4500 cm³