New Elementary Mathematics 2 Textbook 1999 Printing		
Page	Question or Section	Error
59	Exercise 3.3	Students will not receive the necessary information to solve problems 5, 13, and 15 until after completion of Section 3.5
72	Class Activity 1, 8	Question should read "If A increases by 10%, its value becomes B. Then B is $\mathbf{1 1 0 \%}$ of A." or "If A decreases by 10%, its value becomes B . Then B is 90% of $\mathrm{A} . "$
111	Exercise 5.1, 4(c)	Should read: Join JK, KM, ML, and LJ
127	Exercise 5.4, 8	Line on the graph is incorrect, should end at 14:42.
181	Exercise 8.2, 7(b)(ii)	The triangles cannot be proven to be similar from what is given in the problem.
297	Revision 2A, 7	This problem is inappropriate for this level and has multiple answers. The smallest answer possible for the number of bad oranges is 34 .
225	Exercise 9.2, 10	Not enough information given. Add MN = PQ
304	Exercise 11.5, 1(d)	This figure is mislabeled; B^{\prime} should be C^{\prime} and C^{\prime} should be B^{\prime} if the first translation is a reflection in the y-axis, as in the answer. Otherwise the first translation is a rotation of 90° about the point $(0$, 2.5). The second translation is an enlargement by a factor of 0.5 with center at 0 .
427	Exercise 2.5, 3(h)	$\frac{3 x(3-2 x)}{4 y z(3+2 x)}$
429	Exercise 3.6, 3	-16 or 9
	Exercise 4.1, 13(a)	$1.5 \times 10^{8} \mathrm{~km}$
431	Misc. Ex. 1, 3(b)	4
431	Misc. Ex. 1, 5	This problem requires knowledge of the quadratic formula, which students haven't learned yet.
431	Misc. Ex. 1, 14.b	9.60\%
432	Exercise 5.4, 9(d)(i)	Between 50 s and 80 s , the distance between the cars increases from 200 km to 400 km .
432	Exercise 5.4, 9(e)	A regains the lead at 110 sec .
432	Exercise 5.4, 9(f)	Speed = $166.5 \mathrm{~km} / \mathrm{h}$
432	Exercise 5.4, 10	The man passes the old man again at 14:38.
436	Exercise 9.1, 4(a)(i)	47 cm
436	Exercise 9.1, 4(b)(i)	39 cm
437	Exercise 9.5, 4	The orange with a diameter of 8 cm is the better buy.
439	Revision 3A, 8(b)(ii)	$63 \mathrm{~cm}^{2}$
443	Revision 4C, 8(a)	$-6 x^{5}+2 x^{4}-13 x^{3}-10 x^{2}+11 x-24$
443	Revision 4C, 10(b)(ii)	$x=3 \text { or }-\frac{5}{42}$
443	Misc. Ex. 4, 10	$y=\frac{a^{2}-2 a b-b^{2}}{a^{2}+b^{2}}$
443	Ass. 1 Paper 1, 3	$x \leq \frac{83}{28}$
443	Ass. 1 Paper 1, 14	3:36 p.m. or 15:36
443	Ass. 1 Paper 1, 16	net loss of \$12.50
438	Exercise 10.5, 15(a)	$(3 x)^{2}=\left(10-5 \cos 27^{\circ}\right)^{2}+\left(5 \sin 27^{\circ}\right)^{2}$

New Elementary Mathematics 2 Workbook 2005 Printing		
Page	Question or Section	Error
10	Chapter 2,58	A certain number of straws can be divided evenly among 24 boxes. If each box instead got 3 more straws, 20 boxes could be filled evenly, and the rest would be empty. How many straws are there?
66	Chapter 7, 10(d)	Change to: the least possible value of $\frac{b}{a}$
162	Final Ass. 2, 3(b)	Change to: AX
169	Chapter 3, 9(a)	$y=\frac{x(x+1)}{x-3}$
175	Chapter 6, 32(a)	$x=\frac{1}{9}, y=-\frac{1}{5}$
177		Mid-Term, B, 2(a)
177	Chapter 8, 9	$x<1$

New Elementary Mathematics 2 Solutions Manual 2006 Printing		
Page	Question or Section	Error
9	Exercise 1.4, 6(a)	$\begin{aligned} \frac{12.4 \times 10^{3}}{9 \times 10^{-2}} & =\frac{124 \times 10^{2}}{9 \times 10^{-2}} \\ & =13.8 \times 10^{4} \\ & =1.38 \times 10^{5} \end{aligned}$
12	Exercise 2.1, 4(h)	$\begin{aligned} 101 \times 99+1-99^{2} & =(100+1)(100-1) \\ & =100^{2}-1^{2}+1^{2}-99^{2} \\ & =100^{2}-99^{2} \\ & =(100+99)(100-99) \\ & =(199)(1) \\ & =199 \end{aligned}$
24	Exercise 2.6, 30	Last line should be $1 \frac{2}{3}=x$
53	Exercise 4.2	$\begin{aligned} & 1 \mathrm{~L} \text { petrol }=\$ 1.20 \\ & 910 \mathrm{~L} \text { petrol } \end{aligned}=910 \times \$ 1.20 .$
82	Exercise 5.4, 5	Average speed of second bus $=22 \frac{2}{5} \mathbf{k m} / \mathrm{h}$
84	Exercise 5.4, 9(c)(i)	$0.2 \mathrm{~km}=200 \mathrm{~m}$
1	Exercise 5.4, 9(d)	... from 200 m to 400 m
104	Exercise 7.2, 2(g)	Signs should be all < rather than >
233	Misc. Ex. 4, 10	Delete the last step. The answer is $y=\frac{a^{2}-2 a b-b^{2}}{a^{2}+b^{2}}$

