## Area of Complex Figures



## Area of a Triangle 1

|  |  |  | $A$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |

## Area of a Triangle 2













## 192 min


© 2019 Singapore Math Inc. Blackline Master documents may be printed for use with Dimensions Math ${ }^{\text {® }}$ instructional materials.


## 200 min



## 105 min



## 14 months




## $1,400 \mathrm{~mL}$

## 44 oz



## 10 hr


© 2019 Singapore Math Inc. Blackline Master documents may be printed for use with Dimensions Math ${ }^{\star}$ instructional materials.


| 8 | $8 \div \frac{2}{3}$ | $22 \frac{1}{2}$ | $10 \div \frac{9}{10}$ |
| :---: | :---: | :---: | :---: |
| 20 | $3 \frac{3}{4}$ | $\frac{1}{20}$ | $9 \div \frac{4}{10}$ |
| $\frac{2}{21}$ | $\frac{2}{35}$ | $\frac{2}{45}$ | Finish |
| $11 \frac{1}{9}$ | $\frac{4}{10} \div 9$ | Start | $\frac{1}{8}$ |
| $\frac{1}{2} \div 4$ | $\frac{1}{12}$ | $7 \div \frac{2}{3}$ | $\frac{2}{3} \div 7$ |
| 12 | $\frac{9}{10} \div 10$ | $\frac{2}{3} \div 8$ | $4 \div \frac{1}{2}$ |

$$
3 \div \frac{4}{5}
$$

$$
\frac{4}{5} \div 3
$$

$$
\frac{4}{15}
$$

$$
10 \div \frac{1}{2}
$$




 ,000 $\div 100=$ $\qquad$


Sum of the quotients $=$ $\qquad$


Sum of the quotients $=$ $\qquad$

$\qquad$

$\square 0,000 \div 1,000=$ $\qquad$

Sum of the quotients $=$ $\qquad$

Sum of the quotients = $\qquad$


Sum of the products $=$ $\qquad$ Sum of the products $=$ $\qquad$

$\times 100=$ $\qquad$


Sum of the products $=$ $\qquad$

$\qquad$

Sum of the products $=$ $\qquad$

## Print on card stock paper.





Use a pencil and paper clip to make a spinner.


## 10,000

## 1,000,000

## 10,000,000

## 100,000,000

## 10,000

## 10,000,000 <br> 100,000,000

## 10,000

## 100,000

## 10,000,000

## 100,000,000


© 2019 Singapore Math Inc. Blackline Master documents may be printed for use with Dimensions Math ${ }^{\star}$ instructional materials.



| $\frac{1}{?}$ | $\frac{1}{?}$ | $\frac{5}{6}$ | $\frac{1}{?}$ | $\frac{1}{?}$ | $\frac{13}{30}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{?}$ | $\frac{1}{?}$ | $\frac{5}{12}$ | $\frac{1}{?}$ | $\frac{1}{?}$ | $\frac{11}{18}$ |
| $\frac{7}{12}$ | $\frac{2}{3}$ | + | $\frac{4}{9}$ | $\frac{3}{5}$ | + |


| $\frac{1}{?}$ | $\frac{1}{?}$ | $\frac{5}{6}$ |
| :---: | :---: | :---: |
| $\frac{1}{?}$ | $\frac{1}{?}$ | $\frac{5}{12}$ |
| $\frac{7}{12}$ | $\frac{2}{3}$ | + |


| $\frac{1}{?}$ | $\frac{1}{?}$ | $\frac{13}{30}$ |
| :---: | :---: | :---: |
| $\frac{1}{?}$ | $\frac{1}{?}$ | $\frac{11}{18}$ |
| $\frac{4}{9}$ | $\frac{3}{5}$ | + |

Directions: On each turn, roll a die and choose a problem from that column. If you solve the problem correctly, cover the square with a counter. The winner is the first player to mark 3 in a row, column, or diagonal.

| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{6}{9} \div 3$ | $\frac{3}{5} \div 6$ | $\frac{3}{4} \div 8$ | $\frac{2}{9} \div 4$ | $\frac{1}{3} \div 8$ | $\frac{9}{10} \div 5$ |
| $\frac{1}{6} \div 6$ | $\frac{3}{8} \div 5$ | $\frac{1}{3} \div 4$ | $\frac{3}{4} \div 2$ | $\frac{3}{6} \div 8$ | $\frac{3}{6} \div 6$ |
| $\frac{1}{3} \div 9$ | $\frac{10}{11} \div 5$ | $\frac{1}{4} \div 2$ | $\frac{2}{6} \div 3$ | $\frac{2}{3} \div 10$ | $\frac{2}{5} \div 4$ |
| $\frac{7}{4} \div 4$ | $\frac{8}{3} \div 4$ | $\frac{6}{5} \div 5$ | $\frac{8}{5} \div 2$ | $\frac{9}{6} \div 6$ | $\frac{10}{11} \div 11$ |

Directions: On each turn, roll a die and choose a problem from that column. If you solve the problem correctly, cover the square with a counter. The winner is the first player to mark 3 in a row, column, or diagonal.

| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet \bullet$ | $\bullet \bullet$ | $\vdots!$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{4}{3} \div 8$ | $\frac{3}{5} \div 6$ | $\frac{9}{10} \div 5$ | $\frac{3}{4} \div 8$ | $\frac{6}{9} \div 3$ | $\frac{2}{9} \div 4$ |
| $\frac{2}{3} \div 4$ | $\frac{3}{4} \div 2$ | $\frac{3}{6} \div 8$ | $\frac{3}{6} \div 6$ | $\frac{4}{6} \div 6$ | $\frac{3}{8} \div 5$ |
| $\frac{2}{3} \div 10$ | $\frac{2}{5} \div 4$ | $\frac{1}{4} \div 2$ | $\frac{1}{3} \div 9$ | $\frac{10}{11} \div 5$ | $\frac{2}{6} \div 3$ |
| $\frac{10}{11} \div 11$ | $\frac{9}{6} \div 6$ | $\frac{8}{3} \div 4$ | $\frac{6}{5} \div 5$ | $\frac{8}{5} \div 2$ | $\frac{7}{4} \div 4$ |

Place the numbers and one FREE space on the gameboard. You may use all or some of the numbers and you may repeat numbers.
$2,3,4,6,8,9,10,12,14,15,16,18,20,21,22$

| 而 |  |  |  |
| :--- | :--- | :--- | :--- |







## Start: I have $\frac{1}{4}$ I have $\frac{2}{15}$ <br> Who has $\frac{1}{3} \times \frac{2}{5}$ ? <br> Who has $\frac{1}{4} \times \frac{1}{5}$ ? <br> I have $\frac{1}{20}$ <br> I have $\frac{1}{9}$ <br> Who has $\frac{1}{6} \times \frac{2}{3} ?$ Who has $\frac{1}{3} \times \frac{9}{10} ?$

 I have $\frac{3}{10}$Who has $\frac{1}{6} \times \frac{1}{2} ? \quad$ Who has $\frac{1}{12} \times \frac{1}{2}$ ?


## I have $\frac{1}{24}$ <br> I have $\frac{3}{28}$ <br> Who has $\frac{1}{4} \times \frac{3}{7}$ ? <br>  <br> I have $\frac{3}{20}$ <br> I have $\frac{1}{5}$ <br> Who has $\frac{1}{2} \times \frac{2}{5}$ ? Who has $\frac{3}{8} \times \frac{1}{3}$ ?

I have $\frac{1}{8}$
Who has $\frac{1}{6} \times \frac{1}{7}$ ?

I have $\frac{1}{42}$ Who has $\frac{1}{3} \times \frac{5}{9}$ ?

# I have $\frac{5}{27}$ <br> I have $\frac{1}{15}$ <br> Who has $\frac{1}{6} \times \frac{2}{5} ?$ <br> Who has $\frac{2}{7} \times \frac{1}{3}$ ? <br> I have $\frac{2}{21}$ <br> Who has $\frac{5}{6} \times \frac{1}{3}$ ? <br> I have $\frac{5}{18}$ <br> Who has $\frac{2}{7} \times \frac{1}{4}$ ? 

I have $\frac{1}{14}$
Who has $\frac{1}{8} \times \frac{1}{5} ? \quad$ Who has $\frac{4}{9} \times \frac{1}{3}$ ?

# I have $\frac{4}{27}$ <br> Who has $\frac{1}{2} \times \frac{4}{7}$ ? <br> I have $\frac{2}{7}$ <br> Who has $\frac{1}{7} \times \frac{2}{5}$ ? <br> I have $\frac{2}{35}$ <br> Who has $\frac{1}{6} \times \frac{1}{5}$ ? <br>  <br>  

I have $\frac{7}{32}$
Who has $\frac{1}{11} \times \frac{1}{2} ? \quad$ Who has $\frac{1}{10} \times \frac{2}{5}$ ?

## I have $\frac{1}{25}$ <br> I have $\frac{2}{9}$ <br> Who has $\frac{1}{2} \times \frac{5}{6}$ ? <br> I have $\frac{5}{12}$ <br> Who has $\frac{5}{6} \times \frac{1}{5}$ ? <br> I have $\frac{1}{6}$ <br> Who has $\frac{1}{2} \times \frac{1}{2}$ ?










Directions: On each turn, roll a die and choose a problem from that column. If you solve the problem correctly, cover the square with a counter. The winner is the first player to mark 3 in a row, column, or diagonal.

| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{9} \div 3$ | $\frac{1}{5} \div 6$ | $\frac{1}{4} \div 8$ | $\frac{1}{9} \div 4$ | $\frac{1}{3} \div 8$ | $\frac{1}{10} \div 5$ |
| $\frac{1}{6} \div 6$ | $\frac{1}{8} \div 5$ | $\frac{1}{3} \div 4$ | $\frac{1}{4} \div 2$ | $\frac{1}{6} \div 8$ | $\frac{1}{6} \div 6$ |
| $\frac{1}{3} \div 9$ | $\frac{1}{11} \div 5$ | $\frac{1}{4} \div 2$ | $\frac{1}{6} \div 3$ | $\frac{1}{3} \div 10$ | $\frac{1}{5} \div 4$ |
| $\frac{1}{4} \div 4$ | $\frac{1}{3} \div 4$ | $\frac{1}{5} \div 7$ | $\frac{1}{5} \div 2$ | $\frac{1}{6} \div 6$ | $\frac{1}{11} \div 11$ |

Directions: On each turn, roll a die and choose a problem from that column. If you solve the problem correctly, cover the square with a counter. The winner is the first player to mark 3 in a row, column, or diagonal.

| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet \bullet$ | $\bullet \bullet$ | $\vdots!$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{3} \div 8$ | $\frac{1}{5} \div 6$ | $\frac{1}{10} \div 5$ | $\frac{1}{4} \div 8$ | $\frac{1}{9} \div 3$ | $\frac{1}{9} \div 4$ |
| $\frac{1}{3} \div 4$ | $\frac{1}{4} \div 2$ | $\frac{1}{6} \div 8$ | $\frac{1}{6} \div 6$ | $\frac{1}{6} \div 6$ | $\frac{1}{8} \div 5$ |
| $\frac{1}{3} \div 10$ | $\frac{1}{5} \div 4$ | $\frac{1}{4} \div 2$ | $\frac{1}{3} \div 9$ | $\frac{1}{11} \div 5$ | $\frac{1}{6} \div 3$ |
| $\frac{1}{11} \div 8$ | $\frac{1}{6} \div 9$ | $\frac{1}{3} \div 4$ | $\frac{1}{5} \div 7$ | $\frac{1}{5} \div 2$ | $\frac{1}{4} \div 4$ |

